If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-9x-200=0
a = 8; b = -9; c = -200;
Δ = b2-4ac
Δ = -92-4·8·(-200)
Δ = 6481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{6481}}{2*8}=\frac{9-\sqrt{6481}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{6481}}{2*8}=\frac{9+\sqrt{6481}}{16} $
| m2-7m+10=0 | | 4x=5(x-7)+14 | | 3x2+39x+108=0 | | -11-3x=1-7x | | 3x^2+6x^2=54 | | 18=-3+5(x+6) | | x2+9x-682=0 | | 16.4v+16.11=0.43+14.8v | | 6x^2+3x^2=27 | | -19+7k=15-13k+18k | | -13x+36-x2=0 | | −126=14k | | 1-(x+2)+3x=5(2x-5)+x | | 20+10g=6+9g | | 3x^2+5x^2=56 | | 5n-12=-3n | | 2x^2+5x^2=105 | | 6(2x-5)=6x+4 | | 2(x+3)+5x=3(2x+1) | | 15+3t=18-t | | 21-3x=2x-4 | | 12x+6=10x+18= | | 57=2(1+5n)-5(1+6n | | -6=-5p-p | | 7(2-x)+5-4(x-8)=-4-3(x+3) | | 20=1+6x+7 | | 187=11-x | | v-2-3=-8 | | 5y+2=2.5(10y+4) | | 13x+13x=7x+7x=180 | | 3(3x+2)=-5(4x-3) | | 11-7y+8y=5 |